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SPECTRA OF F-SUM AND F-PRODUCT OF GRAPHS

CHANDRASHEKAR ADIGA AND RAKSHITH B. R.

ABSTRACT. Several graph operations based on subdivision graph and its
variants have been introduced by many researchers and their spectral
properties have been studied. The F-sum and F-product of graphs
are one among these graph operations. In literature, many topological
indices of F-sum and F-product of graphs have been examined. In this
paper, we first introduce two matrix forms named as F-sum matrix and
F-product matrix and describe their spectra, and then using the spectra
of these matrices, we compute the spectra of F-sum and F-product of
graphs.
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1. INTRODUCTION

All graphs considered in this paper are simple, that is, graphs with no
loops and multiple edges. For a graph G with vertex labels v, vs,. .., vy,
the adjacency matrix of G, denoted by A(G), is the symmetric (0, 1)-matrix
of order n whose ijth entry is 1 if v; and v; are adjacent in G' and 0 other-
wise. In what follows, the collection of eigenvalues of A(G) is known as the
spectrum of G. There is an extensive literature available on the adjacency
matrix of a graph and voluminous works carried out on this connectivity
matrix reveal interesting connections between the graph structure and its
spectrum, see [7, 8]. Graph operations play an important role in the the-
ory of graph spectra. They provide counterexamples for several interesting
families of graphs and also give rise to nice families of graphs. One of the
interesting problem in spectral graph theory is to determine the spectra
of graphs or graph operations. In literature, various graph operations like
line graphs, join, disjoint union, NEPS of graphs, subdivision graph, corona
product and its variants, etc. have been studied and their spectra are de-
scribed in [1, 2, 5, 7, 8, 11, 12, 19].

The subdivision S(G) of a graph G is the graph obtained by inserting
an additional vertex into every edge of G. Let Q(G) be the graph obtained
from G by inserting a new vertex in each edge of G and then joining pairs of
these new vertices by edges whenever the corresponding pairs of edges are
incident in G. The graph R(G) is defined as the graph obtained from G by
introducing a new vertex corresponding to each edge of G and then joining
each new vertex to the end vertices of the edge corresponding to it. The
total graph of G, denoted by T'(G), is the graph whose set of vertices is the
union of the set of vertices and set of edges of G, and two vertices of T(G)
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are adjacent if and only if the corresponding elements of G' are adjacent or
incident.

Example 1.1. S, Q, R and T graph of G.

NN
LN X

G 5(G) Q(G)

R(G) (@)
FIGURE 1. Graphs S(G), Q(G), R(G) and T(G).

In literature, many graph operations based on S(G), Q(G), R(G) and
T(G) such as the subdivision-vertex neighborhood corona, subdivision-edge
neighborhood corona, R-vertex neighborhood corona, R-edge neighborhood
corona, subdivision-vertex join and subdivision-edge join of two graphs, Q-
graph double corona, R-graph double corona, total double corona, subdivi-
sion double neighbourhood corona, @Q-graph double neighbourhood corona,
R-graph double neighbourhood corona and total double neighbourhood corona,

etc. have been introduced. For their definitions and spectral properties see
[6, 13, 15, 16].

In [10], Eliasi and Taeri based on F'(G) (F = {S,Q, R,T}) introduced four
new sums of graphs called the F-sum of graphs. These are defined as follows:
Suppose G and H are two graphs with vertex sets V(G) and V(H), and edge
sets E(G) and E(H), respectively. Then the F-sum of G and H, denoted by
G +r H, is the graph with vertex set V(G +p H) = (V(G)UE(G)) x V(H)
and two vertices (u1,u2) and (vi,v9) of G +p H are adjacent if and only if
up =v1 € V(G) and ugvy € E(H) or ug = vy and uyvq € E(F(G)) (see Fig.
2). Eliasi and Taeri [10] also studied Wiener index of these graph operations.
Recently, many researchers extended this study to other topological indices.
In [17], Metsidik et al. determined the hyper-and reverse-Wiener indices of
F-sum of graphs. Li and Wang [14] gave explicit expressions for the vertex
PI indices of F-sum of graphs in terms of other indices of parent graphs.
Likewise, An et al. [4] considered F-sum of graphs and gave two upper
bounds for their degree distance index. In [3], Akhter et al. determined
closed formulas for the F-index of these four graph operations and in [9],
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the Zagreb indices of these four operations on graphs have been studied by
Deng et al.

Example 1.2. Consider the graphs G = Cy, the cycle of length 4, and
H = P,, the path of length 1. Fig. 2 describes the F-sum G +p H.

N~

Ci+s Py Ci+q P Ci+r P Ci+r P

FIGURE 2. Graphs Cy +g P», C4 +q Py, Cy +r Py and Cy +7 Ps.

In analogous to F-sum of graphs, Sarala et al. [18] introduced four new
graph operations called F-product of graphs which are defined as follows:
The F-product of G and H, denoted by G xp H, is the graph with set of
vertices V(G +r H) = (V(G) U E(Q)) x V(H) and two vertices (uy,us)
and (v1,v2) of G xp H are adjacent if and only if u; = v; € V(G) and
ugvy € E(H), or ujv; € E(F(Q)) (see Fig. 3).

Example 1.3. Consider the graphs G = Cy, the cycle of length 4, and
H = P;, the path of length 1. Fig. 3 describes the F-product G xp H.

C4 XSP2 04 XQP2 C4 ><RP2

FIGURE 3. Graphs Cy xg Py, Cy xXQ Py, Cy xp Py and Cy x7 Ps.

Sarala et al. also studied Zagreb indices of these graph operations. Mo-
tivated by all these works, in this paper, we study spectral properties of
F-sum and F-product of graphs. We first define two matrix forms named as
F-sum matrix and F-product matrix, and then describe their spectra. Next
using the spectrum of F-sum matrix, we obtain the spectrum of the F-sum
G +r H when G is regular, and using the spectrum of F-product matrix,
we obtain the spectrum of the F-product G x g H when both G and H are
regular graphs.
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2. SPECTRUM OF F-SUM MATRIX AND F-PRODUCT MATRIX

Let M = (m;j) be an n x m matrix and N be an p x ¢ matrix. Then
the Kronecker product M ® N of M and N is the np x mq matrix ob-
tained by replacing each entry m;; of M by m;; N. It is well-known that
(M®N)(RxS)=MRx NS, whenever the products MR, NS are defined,
and Ay is the eigenvalue of M @ N, whenever A\ and u are the eigenval-
ues of the sqaure matrices M and N, respectively. Using the definition of
Kronecker product, we now define F-sum matrix and F-product matrix as
follows.

Let A, C, and D be real symmetric matrices of order m, n (m > n) and r,
respectively. Let B be a m x n real matrix. Consider the following two real
square matrices of order r(m + n).

p_| A®L B,
T BT (I,®D)+(C®l,)

and

s [ Az B J,
P71 BT®J, (In®wD)+(CxJ) |°

where I, is the identity matrix of order r and J, is the square matrix of
order r whose all entries are 1. We call the matrix F as the F-sum matrix
if Fy satisfies the conditions (a) and (b) stated below, and we call the matrix
F), as the F-product matrix if they satisfy all the following conditions.

(a) If X; and Y; are the singular vector pairs corresponding to singular values
b; of Bfori=1,2,...,n, then X; and Y; are orthogonal eigenvectors of
A and C, respectively, or equivalently, if BY; = b;X; and BT X; = b;Y;
fori=1,2,...,n, then AX; = a;X; and CY; = ¢;Y;, where a; and ¢; are
the eigenvalues of A and C, respectively.

(b) If BTX; =0 fori=n+1,n+2,...,m, then X; are orthogonal eigen-
vectors of A, that is, AX; = ¢;X; for i =n+1,n+2,...,m, where a/s
are eigenvalues of A.

(¢) D is a regular matrix, i.e., D1, = d1,, where 1, is a column vector of
size r whose all entries are 1.

Let dy,ds,...,d, be the eigenvalues of D. In the following theorem, we list
all the eigenvalues and eigenvectors of the F-sum matrix.

Theorem 2.1. Let Fs be a F-sum matriz as defined above. Then the spec-
trum of Fs consists of the following:

ai—&-ci-i-dj:I:\/(ai—ci—dj)2+4b?

(i) 5 for by 0,4 =1,2,....,n and
j=12...r;

(i1) ¢ +d; and a; for by =0,i=1,2,...,nand j=1,2,...,r;

(#ii) a; repeating r times fori =n+1,n+2,...,m.

Proof. Let Zy,Zs,...,Z, be orthogonal eigenvectors of D corresponding to
the eigenvalues di,dp,...,d, and let d;; # 0 be any scalar. Then for i =



Spectra of F-sum graphs and F-product graphs 323

1,2,...,nand j=1,2,...,r, we have

A®I, B I, X; X)Zj N (ai+5ijbi)Xi ®Zj
BTwI, (I,®D)+(C®I) 0 i Z; | | (bi+6ii(ci+dy)Yi Z; |°
Xi X Zj
0ijY; © Z;
an eigenvector of Fy with corresponding eigenvalue a; + d;;b; if and only if
¢ - bz . Xi ® Zj
a; + 0;5b; = E +¢; +dj, that is, [ 5,Y % Z;
corresponding eigenvalue a; + d;;b; if and only if b; # 0 and
¢ +dj —aqji\/(Ci+dj —ai)2+4bz2
2b;

The above matrix equation implies that the column vector [

is an eigenvector of F with

. This proves (i).

51']‘ =

If b; = 0 for some ¢ = 1,2,...,n, then for j =1,2,...,r, we have

(1) AR I, B®I, XZ?OZJ o XiQQZj
BTwI, (I,&D)+(C®I,) 0 - 0

and

A, B, 0 1 _(ray| 0
BTwl, (I,«D)+(Cwl) ||Yiewz; |~ 9 TY9 | vinz |-

Moreover the matrix equation (1) is also true for i =n+1,n+2,...,m.
This proves (ii) and (iii). Thus we have listed all the eigenvalues of the
F-sum matrix Fs together with their corresponding eigenvectors. [l

Our next theorem describes the spectrum of F-product matrix.
Theorem 2.2. Let F, be a F-product matriz as defined above. Then the
spectrum of F), consists of the following:

(i) 0 repeating m(r — 1) times;

(i1) d; repeating n times for j =2,3,...,r;

a;r +cr+d=+ \/(cir +d — a;r)? + 4b?r?
(#ii) forb; #£0,i=1,2,...,n;

2
() air, d+cir forb; =0,i=1,2,...,n and a;r fori =n+1,n+2,...,m.

Proof. Let Z1 = 1,,Z>, ..., Z, be orthogonal eigenvectors of D correspond-
ing to the eigenvalues dy = d, do, .. ., d,, respectively. Then for:=1,2,...,m
and j = 2,3,...,r, we have
AR J, B® J, X; ® Z; —0
BT%J, (I,&D)+(C®J,) -

and

A®J, B® J, 0 _d 0
This proves (ii) and (iii). Now let §; # 0 be any scalar. Then for i =
1,2,...,n, we have

A®J, B® J, X, ®1, . r(a; + 60:0;) X; ® 1,
BT®J, (I,®D)+(C®J,) || &Yi®l |~ | (bir+&(d+cr)Y;®l, |-
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X; ® 1,y

The above matrix equation implies that [ Y, 91,

} is an eigenvector of F, if

b )
and only if r(a; +0;b;) = %+d+cm that is, [ fﬁgjll” ] is an eigenvector of
i 7 r
(cir +d—ar) £ \/(cir +d — a;r)? + 4b?r?
F, if and only if b; # 0 and ¢; = T .
If b =0 for i =1,2,...,n, then observe that '
A® J, B®J, X;® 1, X 21,
(2) T . = a7
B'®J, (In®D)+(C®J,) 0 0
and
AR J, B®J, 0 At e 0
BT®J, (I,»D)+(C®J,) || Yol | ClYel |-
Moreover the matrix equation (2) is also true for i = n+ 1,n+2,...,m.
This proves (iii) and (iv). O

3. SPECTRA OF F-SUM AND F-PRODUCT OF TWO GRAPHS

Let G be an k-regular graph with n vertices and m edges, and let H be any
arbitrary graph on r vertices. We denote the edge-vertex incidence matrix
of G by M(G) and the adjacency matrix of the line graph of G by L(G).
It is well-known that M(G)MT(G) = L(G) + 2I,, and MT(G)M(G) =
A(G) +kI,. In this section, we list all the eigenvalues of the F-sum G +z H
of G and H and also we describe the spectrum of the F-product G +p H
of G and H, when H is an d-regular graph. In the sequel, we denote the
eigenvalues of G by Ay > XAy > ... > ), and the eigenvalues of H by
H1 2 2 2 oo 2 fhye

Theorem 3.1. Let F(G) be the subdivision graph of G. Then
(a) the spectrum of F-sum G +r H of G and H consists of

p £ \/u2 + 4N + k)
SN #E—k,i=1,2,..

(i) w; repeating p times for j =1,2,...,r and 0 repeating (m—n+p)r
times, where p is the multiplicity of —k as an eigenvalue of G.
(b) If H is an d-regular graph, then the spectrum of F-product G xp H of
G and H consists of
(i) 0 repeating (mr-n+p) times and d repeating p times, where p is the
multiplicity of -k as an eigenvalue of G;
(i) p; repeating n times for j =2,3,...,r;

2 1 A0 2
(#ii) dt vd +2(/\Z+k)r for \i £ —k,i=1,2,...,n.

(i) snandj=1,2,...,7;

Proof. By proper labeling of the vertices of G +p H and G xp H, one can
write down the adjacency matrices of G +r H and G xp H as follows:

_ 0 M(G)® I,

AlC+rH) = [ MT(G) @1, I, A(H) |’

B 0 M(G) & J,

A(G xp H) = { MT(G)» J, I, A(H) |
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Now, comparing above matrices with the F-sum and F-product matrices, we
have A=0,C =0, B= M(G), D= A(H) and MT(G)M(G) = kI,+A(G).
Thus a; =0, i =1,2,...,mand ¢; = 0, i = 1,2,...,n, and b? = \; + k.
Substituting these values in Theorem 2.1 and Theorem 2.2, we obtain the
desired the result. g

Theorem 3.2. Let F(G)=Q(G). Then

(a) the spectrum of F-sum G +p H of G and H consists of
(i N+pij+k—2+1/(Ni—pj+k—22+4(\ +k)

9 ;A 7é —k, i =
1,2,...,nand j=1,2,...,r;
(it) wj repeating p times forj =1,2,...,r and —2 repeating (m—n+p)r
times, where p is the multiplicity of —k as an eigenvalue of G.
(b) If H is an d-regular graph, then the spectrum of F-product G Xxgp H of G
and H consists of
(i) 0 repeating m(r — 1) times;
(ii) p; repeating n times for j =2,3,...,7;
(iii) N+k—=2r+dE£/(d— (N +k—2)r)2+4(\ +k)r?
2

for N #
ki=1,2,...,n;

(iv) —2r repeating (m — n + p) times and d repeating p times, where p
is the multiplicity of —k as an eigenvalue of G.

Proof. We label the vertices of G in such a manner that the adjacency ma-
trices of G +r H and G xg H are

LG)@l MG,
A(G+FH)=[MT(G)®I, I, ® A(H) ]

LG ®J, M(G)&J,
A(G xp H) = MT(G)® J, In®A(H)]

Now, comparing above matrices with the F-sum and F-product matrices,

we have A = L(G), C =0, B = M(G), D = A(H) and MT(G)M(G) =

kI, + A(G). Thus

a;=XN+k—2fori=1,2,...,nand a; =—-2fori=n+1n+2,...,m,

¢;=0,i=1,2,...,n,and b? = \; + k.

Substituting these values in Theorem 2.1 and Theorem 2.2, the result follows.
d

Theorem 3.3. Let F(G)=R(G). Then

(a) the spectrum of F-sum G +p H of G and H consists of

(i Ai + \/()\i +ui)? + 4\ + k)

s N #E =k, i =1,2,...,n and
j=12,...r;
(i1) wj — k repeating p times for j = 1,2,...,r and 0 repeating (m —
n + p)r times, where p is the multiplicity of —k as an eigenvalue
of G.
(b) If H is an d-reqular graph, then the spectrum of F-product G xp H of G
and H consists of
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(i) 0 repeating mr-n+p times and d — kr repeating p times, where p is
the multiplicity of —k as an eigenvalue of G;
(i) pj repeating n times for j =2,3,...,r;

"Ag d:f: d i2 4 3 k‘ 2 .
(i) THT VA J”;) A Ak i=12 ..n.

Proof. The adjacency matrices of G +r H and G xp H can be formulated
as

A(G+FH):[ 0 M(G) ® I, ]

MY(G) @ I (I, ® A(H)) + (A(G) @ I)

0 M(G) % J,
A(G H) = .

@M= 4@y, (1, Al 4 (AG) 5

Now, comparing above matrices with the F-sum and F-product matrices,
we have A = 0, C = A(G), B = M(G), D = A(H) and MT(G)M(G) =
kI, + A(G). Thus a; =0,i=1,2,....,mand ¢; = \;, t = 1,2,...,n, and
b? = \; + k. Substituting these values in Theorem 2.1 and Theorem 2.2, the
result follows. O

Theorem 3.4. Let F(G) be the total graph of G. Then

(a) the spectrum of F-sum G +r H of G and H consists of
2N +k—24p £ /(n; —k+2)2+4(\ + k)

(i) 5 Ni#E—ki=1,2,...

and j =1,2,...,r;
(i) pj — k repeating p times for j =1,2,...,r and —2 repeating (m —
n + p)r times, where p is the multiplicity of —k as an eigenvalue
of G.
(b) If H is an d-regqular graph, then the spectrum of F-product G xp H of G
and H consists of
(i) 0 repeating m(r-1) times;
(i) w; repeating n times for j =2,3,...,r;
(iii) 2N +k—2r+dL+/(d— (k—2)r)2+4(\ + k)r?
2

for N\; £ —k,
1=1,2,...,n;

(iv) —2r repeating m-n+p times and d — kr repeating p times, where p
is the multiplicity of —k as an eigenvalue of G.

Proof. The adjacency matrix of G +r H and G xr H can be expressed as

L(G) » I, M(G) I, ]

AG+r H) = [ MTG) I (I,2 AH))+ (AG)® 1)

ER I I R kN

MT(G)w J. (I,® A(H)) + (AG) ® J,)
Now, comparing above matrices with the F-sum and F-product matrix, we
have A = L(G), C = A(G), B = M(G), D = A(H) and MT(G)M(G) =
kI, + A(G). Thus
a;=Ni+k—2fori=1,2,...,nand a; = -2fori=n+1,n+2,...,m,
G =X,1=1,2,...,m, andb% =\ + k.
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Substituting these values in Theorem 2.1 and Theorem 2.2, the result follows.

O

4. CONCLUSION

Here we have computed the spectra (adjacency spectra) of certain F-

sum graphs and F-product graphs. These results can be used to construct
infinite families of cospectral (adjacency) graphs. Further using the spectra

of

F-sum matrix and F-product matrix it is also possible to compute the

spectra of the Laplacian matrix and signless Laplacian matrix of F-sum and
F-product of graphs when the constituent graphs are regular.
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